If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16a^2+56a+49=49
We move all terms to the left:
16a^2+56a+49-(49)=0
We add all the numbers together, and all the variables
16a^2+56a=0
a = 16; b = 56; c = 0;
Δ = b2-4ac
Δ = 562-4·16·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-56}{2*16}=\frac{-112}{32} =-3+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+56}{2*16}=\frac{0}{32} =0 $
| 24=4(u+3)-8u | | (4a+7)^2=49 | | 7x-52=3x | | 5x²-46x+9=0 | | 7r2+4r–8=0 | | 7x+30=10x+6 | | xx6-7=65 | | 2x–5=x+9 | | -1.5x+362=180.5 | | -42=4(3x-4)-2 | | 6x=32-15 | | 6^(x^2+3x)=1296 | | 9)3n-3=21 | | 2/3x-1/6=1/2x | | 3r+6+2r+9=r | | 2(4x-1)=-4x-26 | | (4a+7)^2=0 | | 4x+28=5x+20 | | 2(x+8)=6x+48 | | 7^x-0.5^x=-1 | | 6+17u=-15+4u | | 2(x-1)=4x-24 | | 21x=7-1x | | 5-8x=5-7x | | 5(3x-1)-1=x+36 | | (x+1)+(x+1)=24 | | 12+3x=1x-12 | | 3(2x-3)=-27 | | .5x+13=26 | | 2x+14=2(3x+3) | | 7^x=0.5^x-1 | | 2(2x-3)=-x+49 |